The energy saving potential of existing energy efficient lighting

Harry Verhaar – Sr. Director - Energy & Climate Change

Avila Energy Congress Avila 26 April 2007

Energy & Climate Challenges Need for Energy Efficiency is growing

- Energy prices
- Climate change / Kyoto
- Supply security
- Economic growth

Energy Efficient Lighting

Lighting makes up 19% of global electricity consumption:

CO₂ emission from burning fossil fuels for Power Generation used by *Lighting* (EU27)

Examples of energy saving lighting solutions

Area of lighting	Energy saving	CO2 savings per lamp per year
Road lighting		109 kg CO ₂
Shop Lighting	Halo 🍞 🐴 🍸 CDM	115 kg CO ₂
Office & Industrial Lighting	TL8	77 kg CO ₂
Home Lighting	GLS 💡 🎒 🎧 CFLi	34 kg CO ₂
LEDs	GLS 💡 😝 😴 LED	34 kg CO ₂

New technology offers huge energy savings and also means more safety on roads

EU Road Lighting - potential savings 3.5 Million tons of CO₂^{*}

File: Avila Energy Congress – Energy Efficient Lighting – 26 April 2007

* excluding dimming / lighting controls

- 56 Mio street-lighting light points (source: VITO)
- One third still using 1930`s technology
 - High-Pressure Mercury Lamps (HPL)
- Alternatives available:
 - High Pressure Sodium
 - Ceramic Metal Halide (Cosmopolis)

50 lm/W

100 lm/W

New research on EU Office Lighting

Less than only 25% of Europe's office lighting is energy efficient

And complies with quality standards for office workers

(EN 12464-1)

EU Office & Industry Lighting

Old Technology

- Old fluorescent lamps
- Passive Analogue drivers

New technology

- High efficiency TL5 fluorescent lamps
- Active electronic drivers
- Lighting control systems

EU27: 75% old 1940`s technology; only 1% using lighting controls 1 Bio 'TL' light-points

Energy saving opportunities in home lighting

100W incandescent light bulb

Average lifetime: 1 year

100W light bulb 1000 hours per year 0.15 p/kwh

20W Energy saving CFL light bulb

Up to 12 euro saving per year or \in 72,-during 6 years

Energy Saving Options for Domestic Lighting

1. Compact Fluorescent Lamps

- 80% Energy Savings
- Major improvements last few years (size; light; cost; ..)
- Need to balance demand and global industry capacity
- 2. Energy Saving Halogen
 - Up to 50% Energy Savings; high light quality
 - Replacement range in launch phase
- 3. Solid State Lighting (LED`s)
 - Currently for decorative replacements
 - Today limited but fast improving light output

EU Domestic Lighting

<u>EU27</u>

- Currently approx 2.1 billion incandescent light bulbs are sold in EU 27 each year
- Installed base 3.6 billion
- Household penetration CFL lamps in EU approx 15%
- Market adoption CFL slow although increasing recently

<u>Global</u>

- Global annual incandescent sales volume around 12.5 billion (10 times CFLi)
- Installed incandescent base approximately 15 billion

Two thirds of all lamps volume

within 10 years all (new & available) alternatives can replace installed GLS base

Projected Energy Savings through EE Lighting

Segment	Product	Realistic Savings	Ambitious Savings
Streetlighting	HID	25%	35%
Office & Industry	TL	20%	35%
Homes	GLS	50%	70%
L	ghting total	20%	40%

Real	istic:		Amb	itious:	
1.	Streets	: Phase-out HPL/ML	1.	Streets	: id. + 40% controls
2.	0&1	: 1/3 EM; 2/3 HF; 10% controls	2.	O&I	: 100% HF; 30% controls
3.	Homes	: 50/20/30 CFL/ESH/GLS	3.	Homes	: 70/10/10/10 CFL/ESH/LED/GLS

Country examples Realistic Scenario (10 yrs; 20% savings)

Country	Electricity (TWh)	CO ₂ (Mton)	Electricity (Bio €)	
Germany	17.2	8.8	2.3	
UK	14.6	6.1	1.3	
France	13.7	0.6	1.2	
Spain	11.4	3.6	1.0	
Portugal	2.6	1.0	0.3	National Energy
Greece	2.6	1.9	0.2	Efficiency
	•		·	Action Plans

Consolidated savings for Street-lighting; Offices & Domestic

<u>Timeframe</u>: 1. Street-lighting & Office (tbd in NEEAP`s)
 2. Domestic (2016)

13

Europe (EU27) Savings potential of existing lighting technology

Savings	Realistic	Ambitious
Electricity (Bio €)	12	24
CO ₂ (Mtons)	43	86
Oil (Mio Barrels eq.)	150	300
Power plants	50	100

Overcoming Barriers

- 1. Awareness Campaigns (public / private)
- 2. Policy Measures / deployment (IM`s EUP; NEEAP`s)
- 3. Partnerships (public / private / NGO`s / utilities)

Supportive Policy Measures

Suggestions to accelerate market uptake of more efficient products

- 1. Green Procurement
- 2. Financial incentives
- 3. Disallowing old inefficient products
- 4. Environmental performance targets

NEEAP`s Relevant for New Installations & Renovation

New Installations

- Minimum Energy Efficiency Targets (Products; Applications)
- Energy Efficiency Label x differentiated VAT
- Phase-out schemes old lighting technology

Renovation

- Street-Lighting in Municipalities
- Lighting in Government Offices; Schools; Hospitals; Large Companies
- Utility investment in EE per household (pay-back in electricity bill)

+ improved Market Surveillance

Summary

New lighting technology exists now, but current adoption rate needs acceleration (through renovation programs)

This technology offers a unique triple win
1. Users/tax payers save costs & have better light quality
2. The environment benefits from lower energy/CO₂ emissions
3. European competitiveness is strengthened

NEEAPS play a crucial role in realizing lighting`s savings potential, with role model behaviour for governments and private sector

